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Humans communicate internal states through complex
facial movements shaped by biological and evolutionary
constraints. Although real-life social interactions are
flooded with dynamic signals, current knowledge on
facial expression recognition mainly arises from studies
using static face images. This experimental bias might
stem from previous studies consistently reporting that
young adults minimally benefit from the richer dynamic
over static information, whereas children, the elderly,
and clinical populations very strongly do (Richoz, Jack,
Garrod, Schyns, & Caldara, 2015, Richoz, Jack, Garrod,
Schyns, & Caldara, 2018b). These observations point to a
near-optimal facial expression decoding system in young
adults, almost insensitive to the advantage of dynamic
over static cues. Surprisingly, no study has yet tested the
idea that such evidence might be rooted in a ceiling
effect. To this aim, we asked 70 healthy young adults to

perform static and dynamic facial expression recognition
of the six basic expressions while parametrically and
randomly varying the low-level normalized phase and
contrast signal (0%–100%) of the faces. As predicted,
when 100% face signals were presented, static and
dynamic expressions were recognized with equal
efficiency with the exception of those with the most
informative dynamics (i.e., happiness and surprise).
However, when less signal was available, dynamic
expressions were all better recognized than their static
counterpart (peaking at ∼20%). Our data show that
facial movements increase our ability to efficiently
identify emotional states of others under the
suboptimal visual conditions that can occur in everyday
life. Dynamic signals are more effective and sensitive
than static ones for decoding all facial expressions of
emotion for all human observers.
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Introduction

Human facial movements transmit a wealth of
dynamic signals that readily provide crucial information
about other people’s emotional states. The temporal
dynamics of facial expressions of emotion are finely
optimized to hierarchically transmit biologically rooted
and socially adaptive signals over time (Jack, Garrod,
& Schyns, 2014). In everyday life, we are flowed by
dynamic emotional signals steadily stimulating the
visual system over the course of social interactions.
As a consequence, the frequency of exposure to
dynamic faces is markedly higher compared with static
ones. Yet, most studies investigating facial expression
recognition (FER) have relied on the sole use of static
face images; thus, very little is known about how the
human brain decodes and processes dynamic facial
expressions of emotion. This experimental bias might
stem from previous studies consistently reporting
that young adults minimally benefit from the richer
dynamic over static information, whereas children,
the elderly and, clinical populations very strongly
do (Richoz, Jack, Garrod, Schyns, & Caldara, 2015;
Richoz, Jack, Garrod, Schyns, & Caldara, 2018b).
Dynamic face stimuli are also more difficult to control;
experiments using dynamic faces take longer, and there
are fewer databases available for dynamic compared
with static faces. In fact, as previously pointed out
by Dobs, Bulthoff, & Schultz, (2018), controlling the
role of motion and form information in dynamic
ecological natural stimuli is challenging. Point lights
can provide and test the importance of facial motion
information, but they are highly unnatural. Morphing
techniques might help to control motion while
approximately preserving form. However, as noted by
Dobs et al. (2018), they only represent a coarse linear
approximation of natural face motion, which might lead
to less accurate emotion recognition than their natural
counterparts (Cosker, Krumhuber, & Hilton, 2010;
Korolkova, 2018; Wallraven, Breidt, Cunningham, &
Bülthoff, 2018). Synthetic faces might help to solve this
challenge, but they suffer in terms of ecological validity.
Despite these methodological challenges, the lack of
studies using dynamic natural faces is still surprising
because evolutionary and ontogenetic perspectives
would posit an advantage in processing dynamic faces
for all human observers.

From an evolutionary perspective, humans have
had more extensive experience with dynamic faces as
the perception of static faces emerged only recently
in human history, with the first existing portraits
originating in ancient Egypt approximately 5,000 years
ago. For hundreds of centuries, this form of art was
a privilege of the nobles and powerful. Although
exposure to paintings and statues increased throughout
history, it is only during the last century that humans

have become more and more confronted with static
face images with the advent of photography and the
rapid expansion of digital technologies. Critically,
daily exposures to static faces occurred only during
the last 20 years with the use of smartphones and
the diffusion of pictures and selfies throughout social
networks and media content. However, during the
very last few years, dynamic social media messages
are massively overtaking static ones over the internet
(i.e., Instagram, TikTok). The exposure to static face
images in social media remains limited compared with
dynamic face signals. Moreover, from an ontogenetic
perspective, infants are mostly deprived of any
exposure to static faces during their first year of life.
Infants rapidly tune to cultural differences in facial
expressions of emotion based on learning cues in
dynamic signals (Geangu et al., 2016). Although daily
exposure and evolutionary and ontogenetic perspectives
would predict an advantage in processing dynamic
over static facial expressions, this question remains
unclear.

To date, a relatively modest number of studies
have investigated this question, yielding contradictory
findings (for a review, see Alves, 2013; Fiorentini &
Viviani, 2011; Kätsyri, 2006; Krumhuber, Kappas,
& Manstead, 2013). Although some studies did not
find a dynamic advantage in healthy young adults
(e.g., Fiorentini & Viviani, 2011; Gold et al., 2013;
Kätsyri & Sams, 2008), an advantage was observed in
clinical (e.g., Atkinson, Dittrich, Gemmell, & Young,
2014; Kan, Mimura, Kamijima, & Kawamura, 2004;
Schaefer, Baumann, Rich, Luckenbaugh, & Zarate,
2010) and neuropsychological populations (Adolphs,
Tranel, & Damasio, 2003; Humphreys, Donnelly, &
Riddoch, 1993; Richoz et al., 2015). For example,
Yitzhak, Gilaie-Dotan, & Aviezer, (2018) investigated
emotion recognition with patient L.G., a single case
of developmental visual agnosia and prosopagnosia.
Their results revealed improved recognition scores when
subtle nonstereotypical expressions were presented
with dynamic compared with static faces. We observed
similar findings in another neuropsychological study
examining FER in patient P.S., a pure case of acquired
prosopagnosia with bilateral occipitotemporal lesions
anatomically sparing the regions critical for decoding
facial expressions. Although patient P.S. was selectively
impaired in categorizing several static expressions, her
performance was within the average range with dynamic
faces (Richoz et al., 2015). In contrast with L.G.’s
relatively poor dynamic advantage, the gain for patient
P.S. was prominent; she reached maximum accuracy for
all dynamic expressions except for fear. Her impaired
performance for static expressions can be accounted
for by a suboptimal use of facial information with
static faces, for which she only relies on the lower part
of the face (Fiset et al., 2017). More important, P.S.’
peculiar brain lesions point to the existence of distinct

Downloaded from jov.arvojournals.org on 01/10/2024



Journal of Vision (2024) 24(1):7, 1–22 Richoz et al. 3

cortical pathways for processing static and dynamic face
information (Bernstein, Erez, Blank, & Yovel, 2018;
Duchaine & Yovel, 2015; Fox, Iaria, & Barton, 2009;
Pitcher, Dilks, Saxe, Triantafyllou, & Kanwisher, 2011).
P.S.’s advantage for the recognition of dynamic facial
expressions might rely on an intact functional cortical
pathway directly connecting the early visual cortex to
the posterior superior temporal sulcus, and subsequent
processing in the anterior superior temporal sulcus
(Richoz et al., 2015).

Pursuing these observations, we recently investigated
FER across the lifespan from 5 to 96 years of age.
We aimed to empirically probe the hypothesis that
the dynamic advantage occurs only in populations
with fragile face processing systems—with difficulties
extracting facial information—such as very young
children, whose system is yet to fully mature, and
elderly populations whose system is declining (Richoz
et al., 2018b). Our findings supported our hypothesis;
we observed a clear dynamic advantage in both young
children and the elderlies, whereas young adults
exhibited only a minimal benefit for dynamic stimuli
and only for a very limited number of expressions.
These findings are consistent with previous behavioral
studies revealing that the latter population does not
benefit from the presentation of dynamic signals
(Fiorentini & Viviani, 2011; Gold et al., 2013; Kätsyri
& Sams, 2008). For example, Fiorentini and Viviani
(2011) reported similar identification accuracies and
reaction times for both static and dynamic expressions
in a study using a threshold model with morphed
expressions. Using an ideal observer approach to
objectively assess how much information is carried by
their stimuli across varying tasks and conditions, Gold
et al. (2013) further evidenced identical recognition
scores for static, dynamic, and even shuffled and
reversed expressions in which movie frames were
randomly presented or temporally reversed. Altogether,
these findings suggest a near-optimal FER system in
healthy young adults—as also argued by fast periodic
visual stimulation studies that revealed specific brain
responses to basic emotional facial expressions at a
single glance (e.g., Dzhelyova, Jacques, & Rossion,
2017; Poncet, Baudouin, Dzhelyova, Rossion, & Leleu,
2019).

In optimal situations and with expressions of
high intensity, the visual system of healthy young
adults seems thus to be powerful enough to efficiently
categorize static emotional expressions, leaving only
little scope for improvement when dynamic faces are
shown. As suggested in previous reviews (Dobs et al.,
2018; O’Toole, Roark, & Abdi, 2002), dynamic cues are
beneficial only in suboptimal visual conditions in which
the facial information is limited. This has been shown
in several studies in healthy young adults with degraded
(Ambadar, Schooler, & Cohn, 2005; Bould & Morris,
2008; Bould, Morris, & Wink, 2008) or blurred stimuli
(Ehrlich, Schiano, & Sheridan 2000; Kätsyri & Sams,

2008; Wallraven, Breidt, Cunningham, & Bülthoff,
2008).

For example, Wallraven et al. (2008) revealed
that dynamic faces led to more accurate recognition
scores when facial features, such as texture, shape, or
motion information, were gradually degraded over four
different blur levels. In a further study, Cunningham and
Wallraven (2009) revealed an overall better recognition
performance for dynamic over static expressions
when the faces were presented with varying spatial
information (point-light, wireframe, and full-surface
faces). Although performance was near chance
level for static faces in the point-light condition, the
recognition of dynamic expressions was overall higher
and remarkably similar across all three experimental
manipulations. This report suggests that motion
information can mitigate the negative consequences of
degrading, blurring, or changing the texture of face
and shape information. The facilitative effects driven by
dynamic stimuli were further observed in studies using
complex stimuli such as nonstereotypical (Yitzhak et al.,
2018), conversational (Cunningham &Wallraven, 2009),
subtle (Ambadar et al., 2005; Bould et al., 2008), or
genuine versus deliberate expressions (Namba, Kabir,
Miyatani, & Nakao, 2018; Zloteanu, Krumhuber, &
Richardson, 2018). With these expressions, additional
information provided by moving faces might be
necessary to compensate for the ambiguity elicited by
complexity or the lack of intensity (Krumhuber et al.,
2013).

To sum up, previous studies either failed to report
a dynamic advantage in healthy young adults, which
is possibly reflecting a ceiling effect owing to a
near-optimal facial expression decoding system in this
population or reported the existence of very limited
dynamic advantage for FER in healthy young adults,
restricted to situations in which FER is disturbed
through stimulus manipulation. This observation
raises the question of how much signal is needed to
elicit a dynamic advantage. To clarify this question,
we parametrically and randomly manipulated the
signal (i.e., phase coherence) of the facial expressions
presented to the observers to determine how much
signal they need to recognize the emotional expressions
accurately (from 0% to 100%). We implemented a
similar approach to the one we used in several previous
studies (Bayet et al., 2017; Rodger, Vizioli, Ouyang,
& Caldara, 2015; Rodger, Lao, & Caldara, 2018;
Rodger et al., 2021; Wyssen et al., 2019) yet adapted
it to make it more suitable for dynamic faces. More
specifically, we parametrically manipulated the phase
coherence (i.e., the quantity of signal) by using an
adaptation of the weighted mean phase technique by
Dakin, Hess, Ledgeway, & Achtman, (2002) (see also
Rainer, Augath, Trinath, & Logothetis, 2001; Rousselet,
Pernet, Bennett, & Sekuler, 2008). Importantly, we
implemented an approach equating all the dynamic
and static stimuli for their low-level image properties
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(i.e., spatial frequency spectrum and contrast). Each
stimulus was then characterized by its level of signal
with 0% corresponding to completely de-phased images
and 100% to natural images (100% of phase coherence).
On each trial, the level of signal was determined
by a uniform or adaptive sampling, with the latter
being based on participants’ previous performance.
Seventy-one healthy young adults performed FER
tasks of the six basic expressions (i.e., anger, disgust,
fear, happiness, sadness, surprise) in static and dynamic
conditions. We relied on a database of the six basic
static and dynamic facial expressions of emotion)
created by (Gold et al., 2013). Our methodological
choice was driven by the fact that these authors used
an ideal observer model to objectively measure the
amount of low-level physical information in the stimuli,
as previous studies did not control for this factor (e.g.,
Ambadar et al., 2005; Bould et al., 2008; Cunningham
& Wallraven, 2009; Fiorentini & Viviani, 2011).
Importantly, this database has been successfully used
in several studies (Richoz et al., 2018a; Richoz et al.,
2018b) and led to similar FER performance profiles
as those observed with the seminal Pictures of Facial
Affect database developed by Ekman and Friesen, 1976;
Ekman and Friesen, 1978, corroborating its validity.

Methods

Participants

Seventy-one healthy young adults participated
in the study (M = 20.9 years; SD = 1.7, 16 males).
All participants had normal or corrected-to-normal
visual acuity and did not suffer from neurological,
developmental, or psychiatric disorders. They were
all Caucasian and have always lived in a Caucasian
culture. We decided to control for the ethnicity of
our participants, given that cultural factors have an
influence on FER (Jack, Caldara, & Schyns, 2012;
Jack, Garrod, Yu, Caldara, & Schyns, 2012), and
this can be observed already very early in infancy
(Geangu et al., 2016). Most of our participants were
university students (67) and received course credits
for their participation. Before starting the experiment,
all participants signed a consent form explaining the
main goals of the study. The Ethical Committee of
the Department of Psychology of the University of
Fribourg in Switzerland approved the current study.
All participants provided written informed consent in
accordance with the Declaration of Helsinki.

Stimuli

We used a set of static and dynamic stimuli created
by Gold et al. (2013). They generated their database
by asking eight actors (four females) to perform the

six basic facial expressions of emotion (i.e., anger,
disgust, fear, happiness, sadness, and surprise) (Ekman
& Friesen, 1976). All dynamic expressions started
with a neutral face and naturally evolved into a fully
articulated expression over the course of 30 frames.
The apex of each expression (i.e., the point at which an
expression reached its highest state) was determined by
two raters. Each expression was presented for 1000ms
at a frame rate of 30 frames/second, and all expressions
reached their apex within 30 frames. If an expression
was fully articulated before reaching 30 frames or if
head movements or other artifacts occurred, one to four
supplementary apex frames were added to the dynamic
movie to reach the duration of 1s (this happened only
for seven out of 48 movies; for more details, see Gold
et al., 2013). All dynamic expressions were presented
as front-view grayscale faces cropped at the hairline to
show only the internal facial features to the observers.
In addition, the faces were displayed within an oval
frame, located in the center of a dark grey uniform
background. The edges of the oval frame were slightly
blurred to create a gradual transition between the facial
expressions and the grey-colored background (Gold
et al., 2013). The faces subtended a visual angle of 12°
at a viewing distance of 65 cm from the screen and the
images were 768 pixels in height and 768 pixels in width.

The static facial expression movies were created by
replicating the final frame of each dynamic movie 30
times in a row (see Figure 1; video examples of the
stimuli can be found under the links).

We used the SHINE toolbox (Willenbockel et al.,
2010) to normalize all stimuli for their low-level
properties (spatial frequency and contrast) and the
amount of energy sampled over time, even for the
static facial expressions (see Richoz et al., 2018b). This
procedure allowed us to ensure that all the frames for all
the faces in all conditions had equal low-level properties
over time.

The stimuli were presented to the observers with
varying levels of phase coherence (i.e., signal). The
percentage of phase coherence varied between 100% for
natural images to 0% for completely de-phased images.
To parametrically manipulate the phase coherence, we
adapted the weighted mean phase technique by Dakin
et al., 2002; see also (Rainer et al., 2001; Rousselet et al.,
2008) so that our faces were dephased while contrast
and luminance were maintained constant across all
levels of signal. More specifically, the final image (Ifinal)
shown to observers was obtained by combing an
original image with 100% phase coherence (Iinitial) with
a noise image (Inoise) as it follows:

If inal = w Iinitial + (1 − w) Inoise w [0, 1]

where w defines the degree of phase coherence of the
final image.

Inoise was built through the inverse fast Fourier
transform using the same amplitude as the original
image (ainitial), but a different phase (ϕnoise). Specifically,
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Figure 1. (A) Static examples of one identity expressing the six basic emotions at different levels of phase signal. The rows represent
the six basic expressions (anger, disgust, fear, happiness, sadness, and surprise), and the columns the different levels of signal (0%,
20%, 40%, 50%, 60%, 80%, and 100%). We adapted the stimuli with permission from Gold et al. (2013). Further illustrative video
examples can be seen with the following links for the static condition—Movie 1 and the dynamic condition Movie 3. (B) A schematic
illustration of the adaptive sampling approach.

these two components of the noise image were obtained
using the following equations:

ainitial = abs [FFT (Iinitial )]

ϕnoise =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

tan−1
(
Sϕrandom
Cϕrandom

)
+π if Cϕrandom < 0

tan−1
(
Sϕrandom
Cϕrandom

)
+ 2π if Sϕrandom< 0 and Cϕrandom> 0

tan−1
(
Sϕrandom
Cϕrandom

)
otherwise

where:

Sϕrandom = sin (ϕrandom)
Cϕrandom = cos (ϕrandom) .

This procedure was applied to each frame of the
dynamic movies while ϕrandom was kept constant within
but varied between trials.

In the static condition, each frame was combined
with the same Inoise as its corresponding frame in the
dynamic condition. This result was possible because
the generation of ϕrandom was seed controlled and was
therefore the same across conditions for identical levels
of phase coherence. This procedure ensured that the
low-level properties of each frame of the movies and
the information revealed by the noise were identical in
both conditions.

Methods

As shown in Figure 1, the movies presented to the
observers were characterized by their level of signal,
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with 0% signal corresponding with a completely noisy
pattern and 100% signal with natural images. We
determined the amount of signal presented using two
different procedures across two sessions: a uniform
and an adaptive sampling. Under uniform sampling
conditions, participants were shown images masked
by a random amount of noise that was sampled
independently for each trial, participant, expression,
and condition from a uniform distribution ranging
between 0% and 100%. Although all participants
were not necessarily presented with precisely the
same percentage of noise, this approach allowed to
evenly sample the whole space when considering all
observers. Our hypothesis for the impact of the signal
level on response accuracy was an S-shaped response,
where low and high percentages of signal would lead
to a predominance of wrong and correct answers,
respectively. However, the level of signal at which the
transition between these two extremes would occur
was unknown. Therefore, to capture this moment more
precisely, we adopted an adaptive sampling approach
that modelled the amount of signal to be shown based
on observers’ previous responses. To this aim, on a
separate testing session, we first presented 20 trials with
a signal level drawn from a uniform distribution. Then
we used curve fitting and inverse transform sampling to
increase the likelihood of sampling a signal percentage
around the point of the curve’s maximum slope. This
process was repeated after each of the remaining
trials. Importantly, this adaptive sampling procedure
was implemented for each participant and expression
separately.

The stimuli were shown on a color liquid-crystal
display with a resolution of 1,440 × 900 pixels and a
refresh rate of 60 Hz. The experiment was programmed
in MATLAB (2014) using the Psychophysics Toolbox
(Brainard & Vision, 1997; Kleiner et al., 2007).

Procedure

We informed our participants that they would
be exposed to faces expressing different emotional
expressions on a computer screen and that their task
would be to categorize them as accurately as possible,
according to the six basic facial expressions: anger,
disgust, fear, happiness, sadness, and surprise. All
participants sat 65 cm away from a computer screen in
a quiet room at the University of Fribourg. Each trial
started with a white fixation cross presented for 500 ms
on a grey background at the centre of the screen. Facial
expressions were then presented in random order at the
centre of the screen, one at a time, for 1 second each
and at a signal strength estimated by the uniform or
the adaptive sampling (for a schematic representation
of the procedure, see Figure 1). The same presentation
time was used in both conditions. We decided to use a

1-second stimulus presentation time as it was previously
used in several different studies with dynamic faces
(Adolphs et al., 2003; Recio, Schacht, & Sommer, 2013;
Richoz et al., 2015). After each stimulus, a response
window appeared at the centre of the screen and
remained there until the participant gave their answer
by pressing the correct key on a labelled keyboard. We
gave the observers as much time as needed to familiarize
themselves with the different possible responses and
their corresponding keys and told them that reaction
time was not important for the current experiment. No
feedback was given to the observers for their answers.
If participants did not know the answer or did not have
enough time to judge an expression, they could press
an, “I don’t know”–labelled key on the keyboard. Such
a key was proposed to the participants to reduce the
noise and response bias produced by the absence of this
response possibility. Participants performed 768 trials
presented with the uniform sampling of the noise and
768 trials with the adaptive sampling of the noise, for
a total of 1,536 trials divided into 2 different sessions
that took place on different days. Each session lasted
for approximately 50 minutes. The 768 trials included 8
identities expressing 6 expressions 8 times in static and
dynamic conditions (8 × 6 × 8 × 2). The 768 trials were
divided into 10 blocks of 77 stimuli (75 for the last one).
The stimuli were not blocked by condition, and each
block presented a random ratio of dynamic and static
faces. Before starting the testing phase, participants
completed 12 practice trials in each condition.

Data analysis

Data analysis was performed in R (The R Foundation
for Statistical Computing, Vienna, Austria). First, we
computed the average accuracy percentage by using
a 2% signal window, from 0% to 2% of signal to
98% to 100% of the signal, which resulted in 50 bins.
This procedure was performed twice: once for the
dynamic and the static condition independently of the
expressions and once for each condition and expression
separately.

The binned data were then fitted using a three-
parameter Weibull type II curve. Using each model,
we estimated the psychometric curve as a function of
signal at a resolution of 0.01% (i.e., resulting in 10,001
points between 0% and 100% of signal). These values
were used to compare dynamic and static conditions
(i.e., dynamic–static) in terms of accuracy, as well as to
determine the amount of signal at which the greatest
difference between both conditions occurred. This
dynamic–static difference was subsequently compared
across expressions.

Additionally, we estimated and compared between
conditions the amount of signal required to reach
99% of the upper asymptote (i.e., ceiling point) and
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to surpass chance level (i.e., 1/6). Finally, using the
estimated models’ parameters, we differentiated each
curve and extracted the slope as a function of signal at
a resolution of 0.01. Using these values, we determined
the maximum slope, which we then compared between
conditions for each expression separately.

To determine the statistical significance of the
comparisons, we used percentile bootstrap. First,
we sampled subjects with replacement and binned
the data. We then fitted the Weibull type II curve,
estimated the same measures as for the original
data, and computed the differences of interest (i.e.,
dynamic–static or between-expression differences).
This process was repeated 9,999 times allowing us to
build a 95% confidence interval (CI) for each difference,
which was considered as statistically significant if its
CI did not encompass 0. Importantly, the CI was
adjusted using Bonferroni correction to account
for multiple comparisons when testing each of the
six basic expressions and the overall condition (i.e.,
7 contrasts) or cross-comparing facial expressions
(i.e., 15 contrasts). This correction was implemented
by dividing the alpha level of 5% in the CI by the
number of contrasts performed. In this case, the CI will
correspond to 100, the corrected alpha level. To simplify
the reading, we refer to this statistical adjustment for
the number of inferences made as the corrected CI.

Finally, to better understand the data, we used
observers’ binned data to determine, in percentages,
how often each expression was recognized as the correct
one or as another one. These values were used to build
confusion plots (see Supplementary Figures S1 and
S2) and matrices to display participants’ choices as a
function of the condition, expression, and amount of
signal presented. All data used in statistical analyses and
represented in figures are available online on the Open
Science Framework repository at: https://osf.io/3269r/
?view_only=23d291246d3644f898a21c08729d6dae.

Results

Figure 2 shows curve fitting across expressions and
conditions. Data follow the expected S-shaped patterns,
as accuracy grows from 0% when 0% of signal is
shown, to a ceiling performance when 100% of signal
is presented. Visual exploration of the raw data and
curve fitting shows that the ceiling points as well as
the rate of growth and quantity of signal required to
accomplish this transition vary across both expressions
and conditions (Figure 2).

As mentioned elsewhere in this article, to evaluate
differences between conditions and expressions
statistically, we used percentile bootstrap to build a
corrected CI. We considered a difference significant if
its corrected CI did not encompass zero. This statistical

processing was applied on the data predicted by the
curve that was fitted on the raw data.

Dynamic vs. static FER performance across
signal percentage: The dynamic advantage

The difference in FER performance between dynamic
and static conditions was computed by subtracting, for
each binned signal percentage, accuracy in the static
condition from modelled accuracy in the dynamic
condition. Consequently, any positive difference
reflects a recognition advantage of dynamic over static
expressions, and any negative difference an advantage
of static over dynamic expressions.

Overall, comparisons between fitted curves show that
a significant dynamic advantage emerges as early as
0.01% of signal. The advantage then grows and peaks
at 18.6% of signal before decreasing and disappearing
from 37.36% of signal onward (Figure 3). Although a
similar pattern in the dynamic advantage is found across
all expressions, some differences can be observed. The
advantage onset occurs later in terms of signal for anger
(9.65%), disgust (2.65%), sadness (7.64%), and surprise
(3.16%) (Figure 3). As reported in Table 1, the amount
of signal at which the greatest dynamic advantage
occurs also varies across expressions. Additionally,
for two expressions out of six (i.e., happiness and
surprise) the dynamic advantage persists until 100% of
signal, and for one expression (i.e., fear), it converts
into a static advantage from 22.95% of signal onward
(Figure 3, Figure 4, and Table 2).

Across all expressions, the largest dynamic advantage
was observed for happiness (mean = 58.02%; 95%
CI [51.79, 64.88]) and the smallest for fear (mean =
12.24%; 95% CI [7.01, 17.02]) (Figure 3, Figure 5A, and
Table 1). Comparisons between expressions revealed
that the magnitude of the dynamic advantage was
significantly different across all of them, except for the
disgust–anger, disgust–sadness, and happiness–surprise
contrasts (Figure 5B). Assessing the percentage of
signal at which the maximum dynamic advantage
occurs shows that it first emerges for fear, followed by
happiness, and surprise and it appears last for sadness,
anger, and disgust (Table 1).

Signal needed to reach the ceiling point (i.e.,
99% of the maximum recognition performance)

As illustrated in Figure 2, participants’ accuracy
shows an initial increase as a function of signal
percentage, followed later by a plateau. To assess the
minimum amount of signal required by participants to
reach their maximum recognition performance (i.e., the
ceiling point), we determined, for each expression and

Downloaded from jov.arvojournals.org on 01/10/2024

https://osf.io/3269r/?viewonly23d291246d3644f898a21c08729d6dae


Journal of Vision (2024) 24(1):7, 1–22 Richoz et al. 8

Figure 2. Raw data and curve fitting for dynamic and static conditions overall and for each expression separately. Dots represent raw
data, while lines represent fitted curves. The vertical dotted lines mark the amount of signal needed to reach the ceiling point (i.e.,
99% of the maximum performance). The horizontal dotted line indicates chance level. Triangles below the x axis mark the presence of
a significant difference in terms of accuracy between dynamic and static conditions.

condition, the signal percentage at which performance
reached 99% of the curve’s upper asymptote.

Results show that both overall and for each
expression independently, except for fear and disgust,
participants needed significantly less signal to reach
99% of their maximum recognition performance in the
dynamic condition (Figures 6, 7). More specifically,

this difference was significant overall (M = −14.66,
corrected CI [−18.37, –4.00]) and for anger (M =
–22.05, corrected CI [−34.61, –9.55]), happiness (M
= –8.29, corrected CI [−13.54, –1.92]), sadness (M =
–6.62, corrected CI [−14.7, –0.45]), and surprise (M =
–16.06, corrected CI [−33.02, –11.31]) (Figure 6 and
Table 2).
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Figure 3. Dynamic–static curve difference overall and across each expression separately as a function of signal percentage. Lines show
the dynamic-static difference between fitted curves as a function of signal percentage. Shaded areas around the curve indicate the
corrected CI. Red shading indicates that the CI does not include 0 (i.e., statistically significant), which is illustrated here as the
horizontal dashed line. Gray shading indicates that the CI includes 0, and the difference is therefore nonsignificant. CI = confidence
interval.

Signal needed to surpass chance level

Finally, we examined the amount of signal required
to surpass chance level in the dynamic and static
conditions. We defined chance level performance as
the scores at 16.66%, which corresponds with one over

six possible answers. The first score above 16.66%
was considered as the value surpassing chance level.
Results show that both overall and for each expression
individually, observers needed significantly less signal
to reach chance level in the dynamic compared with the
static condition (p < 0.001) (Figure 8 and Table 2).
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Magnitude of the
maximum dynamic

advantage
Signal at maximum
dynamic advantage

Overall 33.83 [30.91–37.34] 18.60 [18.03–19.26]
Anger 36.66 [30.68–42.91] 22.76 [21.50–23.79]
Disgust 27.85 [21.23–35.13] 22.73 [21.62–23.66]
Fear 12.24 [7.01–17.02] 14.23 [13.18–15.91]
Happiness 58.02 [51.79–64.88] 15.98 [15.44–16.59]
Sadness 23.05 [17.58–29.82] 21.13 [20.03–22.17]
Surprise 50.10 [43.43–56.16] 18.50 [17.60–19.46]

Table 1. Magnitude of the dynamic advantage and level of
signal at which it occurs. Note. For the amplitude of the
maximum dynamic advantage, we report the corrected CI. For
the signal at which such advantage occurs, we report the 95%
CI. CI = confidence interval.

Growth rate across dynamic and static
conditions

To assess the rate of maximum accuracy increase
as a function of the signal presented, we extracted the
slope of the curve for each expression in each condition
separately. Results show that overall and for each
expression separately, except for fear, signal increase led
to a steeper accuracy increase in the dynamic compared
with the static condition (Figure 9). However, the
statistical comparison of the maximum slope between
conditions was significant only when all expressions
were pooled together (M = 1.44, corrected CI [0.83,
2.29]), and only for anger (M = 2.65, corrected CI
[1.32, 5.09]) and surprise (M = 3.62, corrected CI [1.79,
6.01]) when the expressions were considered separately
(Table 2).

Discussion

This study provides a novel fine-grained parametrical
mapping of young adults’ ability to categorize static and
dynamic expressions from low to full signal strength.
By using an innovative psychophysical approach,
we parametrically and randomly manipulated the
quantity of signal available to the observers. We relied
on a database of stimuli that was created by Gold
et al. (2013), who ensured that the low-level physical
information carried by static and dynamic faces was
equal in both conditions. Moreover, because all stimuli
were equated for their low-level properties, we could
identify the genuine quantity of signal required for
our observers to effectively categorize the six basic
expressions in static and dynamic conditions. This
precise and novel approach allowed us to clarify
whether the very limited to noninexistent advantage
for the recognition of dynamic expressions previously
reported in young adults (e.g., Gold et al., 2013;
Fiorentini & Viviani, 2011; Jiang et al., 2014; Richoz
et al., 2018b) is rooted in a ceiling effect owing to
the experimental conditions typically found in FER
tasks.

A dynamic advantage for all expressions with
low signal

First and foremost, our findings revealed no
overall beneficial effect of motion in healthy young
adults when the stimuli were presented with 100%
of phase signal, as recognition scores were very
similar in both conditions. With these results, we

Figure 4. Accuracy level at 100% of signal. Accuracy levels in the dynamic and static conditions are reported overall and for each
expression independently. Error bars represent the 95% CI. The * indicates a significant difference between conditions based on the
corrected CI. CI = confidence interval.
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Accuracy at 100% signal Maximum slope

Signal at ceiling point
(99% of maximum
performance) Signal at chance level

Static
Overall 69.57 [68.17, 70.82] 4.17 [3.86, 4.50] 39.77 [34.13, 41.71] 16.60 [16.04, 17.26]
Anger 73.79 [70.38, 77.04] 3.02 [2.70, 3.51] 50.63 [43.27, 58.35] 17.96 [17.10, 19.04]
Disgust 72.95 [70.10, 75.51] 4.62 [4.16, 5.19] 38.80 [36.17, 43.46] 20.21 [19.18, 21.28]
Fear 53.13 [49.65, 55.98] 5.42 [4.33, 7.20] 25.09 [22.79, 28.99] 15.45 [14.36, 16.63]
Happiness 94.84 [92.91, 96.41] 8.29 [7.15, 9.71] 29.64 [27.22, 32.84] 14.69 [13.96, 15.48]
Sadness 60.76 [58.01, 63.52] 4.20 [3.57, 4.94] 35.27 [31.54, 29.74] 18.45 [17.45, 19.62]
Surprise 69.49 [66.69, 72.75] 3.47 [2.95, 4.15] 40.38 [37.48, 50.8] 18.11 [17.18, 19.11]

Dynamic
Overall 70.26 [68.82, 71.53] 5.61 [5.15, 6.27] 25.11 [23.65, 30.16] 10.55 [10.02, 11.2]
Anger 75.04 [71.52, 78.21] 5.67 [4.72, 7.27] 28.58 [25.02, 34.32] 12.56 [11.65, 13.57]
Disgust 72.11 [69.33, 74.67] 5 [4.15, 6.15] 31.54 [28.53, 37.6] 14.66 [13.8, 15.66]
Fear 46.38 [43.02, 49.2] 3.67 [3.04, 4.96] 24.17 [21.14, 30.83] 12.23 [11.34, 13.65]
Happiness 97.07 [96.23, 97.81] 9.81 [8.63, 11.30] 21.35 [19.63, 24.93] 8.35 [7.69, 9.10]
Sadness 62.70 [59.93, 65.43] 5.31 [4.51, 6.51] 28.65 [25.05, 31.67] 14.38 [13.38, 15.45]
Surprise 73.59 [70.62, 76.79] 7.09 [5.88, 8.75] 24.32 [19.85, 26.79] 9.72 [8.98, 10.49]

Dynamic–static differences
Overall 0.69 [−0.30, 1.62] 1.44 [0.83, 2.29] −14.66 [−18.37, −4] −6.05 [−6.70, −5.43]
Anger 1.24 [−1.70, 3.90] 2.65 [1.32, 5.09] −22.05 [−34.61, −9.55] −5.40 [−6.91, −3.99]
Disgust −0.84 [−2.82, 1.2] 0.38 [−1.07, 2.21] −7.26 [−15.17, 1.98] −5.55 [−7.07, −4.02]
Fear −6.75 [−9.59, −3.81] −1.75 [−4.09, 0.15] −0.92 [−7.05, 8.03] −3.22 [−4.19, −1.89]
Happiness 2.23 [0.6, 4.39] 1.52 [−0.94, 4.18] −8.29 [−13.54, −1.92] −6.34 [−7.49, −5.18]
Sadness 1.94 [−0.09, 3.87] 1.11 [−0.16, 2.80] −6.62 [−14.7, −0.45] −4.07 [−5.56, −2.89]
Surprise 4.09 [1.48, 6.72] 3.62 [1.79, 6.01] −16.06 [−33.02, −11.31] −8.39 [−9.96, −6.91]

Table 2. Measures [95% CI] estimated from the fitted curves. Note. For static and dynamic FER performance, we report the 95% CI.
For dynamic–static differences, we report CI after alpha Bonferroni correction for multiple comparisons (i.e., the corrected CI). Bold
indicates significant dynamic–static differences. A positive difference in accuracy and slope and a negative difference in signal both
indicate an advantage for the dynamic condition. CI = confidence interval.

replicate previous findings using identical (Gold
et al., 2013) or similar stimuli (intense expressions)
and methodological paradigms (optimal viewing
conditions) (e.g., Bould & Morris, 2008; Jiang
et al., 2014; Yitzhak et al., 2018). However, when
examining each expression independently, our findings
revealed a dynamic advantage with full signal strength
for happiness and surprise. Although some prior
studies (e.g., Gold et al., 2013) only examined the
overall dynamic advantage without considering
each expression individually, the current results are
consistent with the ones we reported in a previous
study revealing a dynamic over static advantage
for happiness and surprise in healthy young adults
(Richoz et al., 2018b). Thus, for young adults, optimal
dynamic signals offer processing benefits only for a
few expressions. For most emotions, the additional
temporal information provided by dynamic faces such
as muscular changes, temporal evolution, and velocity
are not necessary for young adults to recognize them

effectively when they are presented in optimal viewing
conditions.

Second, we examined whether the near-optimal facial
expression decoding system of healthy young adults
is genuinely insensitive to the richness of dynamic
signals or whether the very limited dynamic advantage
observed in previous studies is rooted in a ceiling effect
owing to the experimental settings typically found in
FER tasks. In other words, we tested the idea that a
dynamic advantage is present for all expressions but
can only be revealed with the use of more sensitive
suboptimal visual signals that can occur in everyday life
(distance, occlusion, etc.). To do so, we parametrically
and randomly manipulated the signal (0%–100%) of
the facial expressions presented to the observers by
using a computerized psychophysical technique to
generate unique noise patterns for each frame of the
dynamic movies. We then applied the identical noise
patterns to the corresponding static frame to ensure
that the information available at each level of signal was

Downloaded from jov.arvojournals.org on 01/10/2024



Journal of Vision (2024) 24(1):7, 1–22 Richoz et al. 12

Figure 5. Dynamic advantage across expressions and cross-expression comparisons. (A) Bar plots represent the magnitude of the
maximum dynamic advantage for each expression. Error bars represent the corrected CI. (B) The matrix represents the
cross-expression comparisons of the magnitude of the maximum dynamic advantage. The significance of the contrasts was
determined using the corrected CI and are color coded according to different alpha thresholds. CI = confidence interval.

Figure 6. Minimum amount of signal needed by observers to reach ceiling points. The minimum amount of signal needed to reach the
ceiling points (i.e., 99% of the maximum recognition performance) in both dynamic and static conditions are reported overall and for
each expression independently. Error bars represent the 95% CI. The start indicates significant differences between conditions based
on the corrected CI. CI = confidence interval.

identical in both conditions. We found that all dynamic
facial expressions were better decoded than their static
counterparts when presented with low signal. This
dynamic advantage appeared with as little as 1% of
signal for some expressions, gradually increased, peaked,
and decreased with increasing signals, disappearing
entirely at 38% of signal. Only happiness and surprise
showed a different pattern, with a dynamic advantage

persisting until 100% of signal. Note also that the
initial dynamic advantage observed for fear changed
into a static advantage at approximately 22% of signal.
These findings suggest that dynamic cues provide
additional emotion-related information that facilitate
the recognition of all six basic emotional expressions in
suboptimal visual conditions. Importantly, in healthy
young adults, motion-related cues are beneficial for the
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Figure 7. Minimum amount of signal needed by observers to reach the ceiling point (i.e., 99% of their maximum performance). Each
expression is displayed with the level of signal at its ceiling point (i.e., 99% of maximum performance). Top and bottom rows illustrate
the static and dynamic conditions, respectively.

recognition of anger, disgust, fear, and sadness only
when static information is insufficient, compensating
for the deleterious consequences of degraded or missing
visual information.

Two perceptual processes might explain how facial
dynamics improve emotion recognition in suboptimal
situations. First, the saliency of change may naturally
drive the attention of observers toward the diagnostic

Figure 8. Minimum amount of signal needed by observers to surpass chance level. The minimum amount of signal needed, surpass
chance level in both dynamic and static conditions is reported overall and for each expression independently. Error bars represent the
95% CI. The * indicates significant differences between conditions based on the corrected CI. CI = confidence interval.
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Figure 9. Maximum slope across conditions for each expression and overall. The maximum slopes of the fitted curves in the dynamic
and static conditions are reported overall and for each expression independently. Error bars represent the 95% CI. The * indicates
significant differences between conditions based on the corrected CI. CI = confidence interval.

information in a bottom-up fashion (i.e., the mouth for
happiness), while with static expressions, participants
are required to direct their attention toward those facial
features based on top-down internal representations.
Secondly, motion signals, such as the direction of
change, the temporal evolution of an emotional
expression, the velocity of muscular changes and
contractions, provide additional diagnostic information
that might be critical to support adequate expression
categorization in nonoptimal visual conditions
(Kamachi et al., 2001; Kamachi et al., 2013; Yitzhak
et al., 2018).

In addition, several neuroimaging studies that have
examined the neural underpinnings of the dynamic
advantage have shown that dynamic expressions
involve dissociable neural pathways and elicit broader
activations compare to static expressions (e.g.,
Johnston, Mayes, Hughes, & Young, 2013; Kessler
et al., 2011; LaBar, Crupain, Voyvodic, & McCarthy,
2003; Paulmann, Jessen, & Kotz, 2009; Sato et al.,
2004; Schultz & Pilz, 2009; Trautmann, Fehr, &
Herrmann, 2009). For example, Sato et al. (2004) have
reported enhanced activations to dynamic compared
with static displays in right-lateralized occipital and
temporal cortices comprising the inferior occipital
gyri, middle temporal gyri, and fusiform gyri. In
contrast, the perception of static displays has been
shown to activate a network of motor, prefrontal,
and parietal regions, typically involved in motor
imagery (Kilts et al., 2003). More recently, Liang et al.
(2017) have shown that dynamic compared with static
expressions were associated with higher recognition
accuracies and more robust neural responses in
face-selective areas (occipital face area, fusiform face

area, posterior superior temporal sulcus), as well as in
motion-sensitive regions. These findings suggest that
domain–general motion-sensitive areas that are not
face specific are also strongly involved in decoding
dynamic facial expressions. Observers’ enhanced
ability to accurately decode dynamic expressions
presented with a very low signal could be explained
by the larger and more sensitive cortical network
dedicated to their processing as compared with static
expressions.

Note that our behavioral findings are in line with a
small number of studies that have investigated static
and dynamic FER in suboptimal visual situations
with degraded or blurred faces (Ehrlich et al., 2000;
Kätsyri & Sams, 2008; Wallraven et al., 2008). For
instance, using computer-animated faces, Wallraven
et al. (2008) revealed that motion cues enhanced
the recognition of facial affects when texture or
shape information was systematically degraded or
blurred. If dynamic cues were not provided, degrading
face information significantly affected expression
recognition. However, one major issue of altering
spatial frequency information (i.e., blurring faces) is
that the recognition of some facial expressions can
be more affected than others, because the diagnostic
spatial frequencies are different across emotions
(Plouffe-Demers et al., 2019; Schyns, Petro, & Smith,
2009; Tian et al., 2018). To overcome this limitation, in
the current study, we used a psychophysical approach
that normalized spatial frequency information for
all expressions and experimental conditions. This
methodological choice provides a more reliable view
of how dynamic cues offer processing benefits for the
recognition of all six basic facial expressions on the
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continuum from low to full-strength signal and may
help to clarify past inconsistencies observed across
studies.

Maximum sensitivity to dynamic signals

Having established a dynamic advantage for the
recognition of all facial expressions with low signal,
we then estimated for each expression the maximum
sensitivity to dynamic signals by determining the
point at which the dynamic gain reaches its maximum
before declining. We also estimated the quantity of
signal necessary to reach this peak. To the best of our
knowledge, this study is the first that has effectively
quantified the strength of the dynamic gain for each
expression and the availability of visual information
at this point. We observed the strongest dynamic gain
for happiness followed by surprise with differences in
accuracy of 58% and 50% between static and dynamic
conditions at the maximum dynamic gain, respectively.
The quantity of signal necessary to reach the maximum
dynamic gain was around 16% for happiness and
around 19% for surprise. We observed the maximum
dynamic gain for anger, disgust, and sadness between
21% and 23% of signal. Although significantly weaker
than the dynamic gain for happiness and surprise, the
differences in recognition performance between static
and dynamic conditions at the maximum dynamic
gain were 23% for sadness, 28% for disgust, and 37%
for anger. Finally, we observed a very distinctive
trajectory for fear with an early significant dynamic
gain (12% differences in recognition accuracy) peaking
at 14% of signal before shifting toward a significant
static advantage between 23% and 100% of signal.
Notably, the maximum dynamic gain observed for
fear was significantly weaker than for all the other
expressions.

The stronger dynamic advantage observed for some
expressions over others might be explained by the
diagnostic information embedded in the temporal
evolution of these expressions. Our results here suggest
that, among all expressions, the dynamics of happiness
and surprise signals are the most informative. These
signals might be particularly salient and act as attention
grabbers when very low information is available to the
observers, making them more detectable than static
peak frames in suboptimal conditions. Kamachi et al.
(2013) have also shown that quick dynamic events tend
to be categorized as surprising or happy events, whereas
slow or static events are more likely to be categorized as
sad. The very strong dynamic advantage observed for
happiness and surprise could thus also be due to the
distinct temporal properties of these expressions being
inherently dynamic and rapid (see also Bould et al.,
2008; Jack et al., 2014; Yitzhak et al., 2018).

The maximum dynamic gain we found for anger
and disgust was also strong—albeit significantly lower
than for happiness and surprise. This finding was
paired with a shift in the quantity of signal necessary
to reach the maximum dynamic gain for these two
expressions (i.e., more signal was needed). Previous
studies have shown that the emotional expression of
disgust is frequently confounded with anger (e.g.,
Recio et al., 2013; Richoz et al., 2018b; Rodger et al.,
2015) that could be explained partly by the shared
muscular action units between these two expressions
(e.g., Poncet et al., 2021). More specifically, Jack et al.
(2014) have shown that the confusion between anger
and disgust occurs because both expressions share
similar signals in early dynamics (nose wrinkler and
lip funneler), suggesting that late dynamic signals are
necessary to disambiguate those expressions. The signal
shift we observed here could be accounted for by the
necessity of revealing additional diagnostic information
critical to disentangle the ambiguity triggered by those
expressions. Additionally, we could also speculate that
the early onset in the maximum dynamic gain observed
for happiness–surprise over anger–disgust could rely
on their frequency of exposure. During everyday life
social interactions, we routinely smile to our friends,
feeling joy or often expressing wonderment, a positive
sentiment of surprise (Vrticka, Lordier, Bediou, &
Sander, 2014). In contrast, we rarely face anger and
disgust.

Interestingly, we observed a dynamic gain for
sadness, an expression that has been previously shown
to be better recognized through static face images
(Bould et al., 2008; Recio et al., 2013; Richoz et al.,
2018a; Widen & Russell, 2015) or when evolving very
slowly (Kamachi et al., 2001; Recio et al., 2013; Richoz
et al., 2018b; Widen & Russell, 2015). For instance, in
a previous cross-sectional study, we failed to report a
dynamic advantage for the categorization of sadness at
any age (Richoz et al., 2018b). Ekman (2003) suggested
that, among all expressions, sadness is the one lasting
the longest over time, a property that may explain
why slowness or stillness may increase recognition
performance. Although this explanation might clarify
the absence of a dynamic gain in optimal visual
conditions and with intense expressions, the current
results provide new evidence that the recognition of
sadness benefits from dynamic cues when the diagnostic
information is not fully available.

Finally, our findings revealed a very distinct
trajectory for fear, supporting previous evidence that
this expression has a special status within the framework
of FER (Richoz et al., 2015; Rodger et al., 2015). We
only observed a dynamic advantage for fear with a very
low signal, peaking rapidly before converting into a
static advantage. This initial dynamic advantage could
be due to an increased saliency elicited by the wide
and rapid opening of the eyes when a very low signal
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is available to the observers (see Liu et al., 2022). Our
data also revealed a static advantage for recognizing
fear between 23% and 100% of signal. Although
counterintuitive at first sight, this static advantage
could be explained by the diagnostic information
conveyed by the emotional expression of fear over
time. Using Bayesian classifiers, Jack et al. (2014)
revealed that fear and surprise share similar muscular
activations (upper lid raise, jaw drop) in early signaling
dynamics, leading to systematic confusion between
those two emotion categories. The critical diagnostic
information (eyebrow raiser; Jack et al., 2014) that
allows to accurately distinguish both expressions
becomes fully available only in later signaling dynamics.
Static expressions of fear, displaying the fully evolved
late signaling dynamics for 1 second, are maximally
informative and could thus be advantageous for the
categorization of this expression (see also, Richoz et al.,
2018b). Furthermore, given its unique evolutionary
significance (i.e., indication of danger), the decoding
of fear might recruit additional brain regions or
faster neural pathways (e.g., the amygdala) that might
shortcut the presumably longer processing trajectory
of dynamic faces (e.g., Adolphs, 2008; Furl, Henson,
Friston, & Calder, 2013). For instance, Furl et al. (2013)
have shown that the amygdala plays a critical role in
the decoding of static and dynamic fearful expressions
by recruiting distinct brain areas in a context-sensitive
fashion (form, or motion) to enhance and optimize
their processing. With dynamic faces the amygdala
targets the superior temporal sulcus and V5, both
involved in the encoding of motion information (e.g.,
Pitcher et al., 2011; Schultz & Pilz, 2009), whereas with
static expressions the amygdala selectively targets the
fusiform face area, an area dedicated to the processing
of facial identity (e.g., Haxby, Hoffman, & Gobbini,
2000) and static facial expressions (e.g., Ganel, Valyear,
Goshen-Gottstein, & Goodale, 2005). These findings
suggest that the amygdala guides and controls how
socially salient information is visually encoded by
modulating its connections to dorsal and ventral brain
regions.

Static and dynamic emotion recognition
trajectories from low to full signal

To further examine the specific static and dynamic
emotion recognition trajectories from low to full signal,
we estimated for each expression the quantity of signal
required to surpass chance level, defined as the first
score above 16.66% (1/6 possible answers). Strikingly,
we observed that the amount of signal necessary to
surpass chance level was significantly higher for all
expressions in the static compared with the dynamic
condition. These findings further confirm the existence
of a dynamic advantage for recognizing all facial

expressions and reinforce the notion that dynamic
faces are richer, ecologically more valid depictions of
real-life face representations, enhancing recognition
performance in suboptimal situations.

We also estimated a ceiling point that we defined
as the value at which participants reached 99%
of their maximum recognition performance and
again determined the quantity of signal necessary
to reach this point. Our findings revealed that more
signal was required to reach the ceiling point in the
static compared with the dynamic condition. When
considering each expression individually, we could
evidence that this was true for anger, happiness, and
surprise. In addition, our data also evidenced that fear
and happiness were the first two expressions to reach
their ceiling points, regardless of the condition. In other
words, less signal was required by the participants to
reach their maximum recognition performance for these
two expressions. From an evolutionary perspective, the
emotional expression of fear transmits critical signals to
detect dangers and avoid harmful situations. Therefore,
the biological relevance and importance for human
survival of this expression could explain why observers
reached their maximum recognition performance very
rapidly and needed less signal compared with the
other expressions. As for happiness, the very early
ceiling points observed in both conditions might be
accounted for by the high frequency of exposure to this
emotion during everyday life social interactions (Calvo,
Avero, Fernández-Martín, & Recio, 2016), as well as
to the orthogonal muscular activations elicited by this
expression. This physiological pattern results in a very
effective transmission of diagnostic facial information,
hence leading to an early peak in maximum recognition
accuracy. The dynamic advantage we observed for
the decoding of facial expressions of emotion might
arise from the integration of form and movement, as
previously shown for face identification (Dobs, Bulthoff,
& Schultz, 2016; O’Toole, Roark, & Abdi, 2002). Future
studies manipulating these facial information properties
are necessary to clarify this question.

Finally, to provide an estimate of the nature of
emotion recognition process (i.e., categorical vs.
continuous), we examined the steepness of increase
in recognition performance across emotions and
conditions as a function of signal. To do so, we
extracted the slope of the curve for each expression in
each condition. This procedure allowed us to examine
how quickly the transition happens from very low
to very high recognition accuracy in each condition.
Overall, our data revealed a steeper increase in the
dynamic compared with the static condition, suggesting
that, with an increase of signal, participants quickly
transition to much higher recognition performance with
moving compared with still faces. When considering
each expression separately, we observed a significantly
steeper increase in the dynamic compared with the
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static condition for anger and surprise. Similar results
were observed for all the other expressions, except for
fear, yet the differences between conditions were not
significant. This pattern of results posits that human
observers are more sensitive to signal changes with
dynamic compared with static expressions. For the
latter, the increase of visual information more slowly
benefits the participants.

Altogether, this last set of findings provides some
novel insights into the unfolding of static and dynamic
FER as a function of the amount of visual signal
available, thereby clarifying some of the contrasted and
discrepant results previously reported in the literature.
As observed, the dynamic advantage depends on the
very nature of the diagnostic information available.
Driven by experience and shaped by evolutionary and
ontogenetic dynamics, the human visual system is
optimally tuned to successfully categorize all dynamic
expressions in suboptimal situations. Our findings
also support previous neurofunctional explanations
suggesting the existence of distinct cortical pathways
for processing static and dynamic face information
(Duchaine & Yovel, 2015).

Methodological considerations and future
directions

In the current study, we used a computerized
psychophysical paradigm to parametrically and
randomly manipulate the signal of the static and
dynamic expressions presented to the observers. We
used uniform and adaptive sampling to determine
the level of signal presented in each trial. Under
uniform sampling conditions, the amount of noise was
randomly sampled for each participant from a uniform
distribution ranging between 0% and 100%. Although
this methodological choice allowed us to examine
the dynamic over static advantage across signal, it
did not allow us to precisely determine participants
perceptual thresholds for an effective recognition of the
six basic expressions in static and dynamic conditions,
especially not at the single subject level. Further
studies implementing threshold-seeking algorithms
are necessary to address this question and examine
quantitative individual differences in static and dynamic
facial signal use.

In addition, uniform and adaptive sampling
procedures allowed us to limit the number of trials while
evenly sampling the whole space when all observers
were considered together. Yet, with such procedures,
we did not get the same amount of data points across
all the levels of signal. Therefore, in our future study,
we will address this limitation by defining precisely
specific levels of signal that will be presented to all our
participants.

Note also that we cannot rule out that the noise
patterns affected the perceptual strategies used by
our participants to recognize the facial expressions.
However, as mentioned elsewhere in this article, we
generated the noise using a seed-controlled procedure,
so that corresponding static and dynamic stimuli were
assigned with the same noise patterns for identical
signal levels. As such, if holistic strategies were affected
by the noise patterns added to the stimuli, then the
expressions would have been affected identically in
static and dynamic conditions, given that the same noise
patterns were used in both conditions. Future work will
examine the fixation distribution of our participants to
shed further light on facial information use during this
task.

Finally, it would be interesting to examine whether
the emotion-specific dynamic vs. static advantages
observed in the current study generalize to other
databases of facial expressions of emotion, populations
(Quesque et al., 2022), and cultures (e.g., Caldara, 2017;
Jack, Blais, Scheepers, Schyns, & Caldara, 2009).

Conclusions

Prior studies investigating the dynamic advantage for
the recognition of facial expressions of emotion have
yielded contrasted findings, with some suggesting that
dynamic cues provide processing benefits, while others
suggesting they do not (Fiorentini & Viviani, 2011;
Gold et al., 2013) or only in specific populations (Alves,
2013). To further clarify this question, we examined
static and dynamic FER across signal (0%–100%)
by parametrically and randomly manipulating the
quantity of visual information available to the
observers. Our findings revealed that facial movements
provide additional cues for the recognition of all
facial expressions in suboptimal situations (i.e., with
low signal), allowing observers to disentangle the
ambiguity triggered by insufficient, lacking, or degraded
information. In contrast, in optimal situations, the
visual system of healthy young observers is powerful
enough to efficiently categorize static emotional
expressions, with dynamic faces enhancing recognition
performance only for happiness and surprise with 100%
of signal. By extracting the slope of the curves, our
analyses allowed us to further estimate the steepness
of increase in recognition performance as a function
of signal for each expression in each condition. We
also examined the quantity of signal necessary to
surpass chance level and to reach a ceiling point in
recognition performance. Overall, we observed the
steepest accuracy increment in the dynamic condition;
less signal was also required to surpass chance level and
to reach a ceiling point in recognition performance in
this condition. Altogether, our findings confirm the
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existence of a dynamic advantage for the recognition
of facial expressions of emotion, but also evidence
that this advantage depends on the very nature of the
visual information available. In line with evolutionary
and ontogenetic perspectives as well as neurofunctional
explanations, dynamic signals are more effective and
sensitive than static inputs to reliably categorize facial
expressions of emotion for all human observers. Our
study increases our understanding of the recognition
of static and dynamic expressions and offers a new
approach to precisely map FER deficits in specific
populations.

Keywords: facial expressions of emotion, static,
dynamic, parametric noise, psychophysics
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